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Abstract

Background: The longer growing season under climate warming has served as a crucial mechanism for the enhancement of
terrestrial carbon (C) sink over the past decades. A better understanding of this mechanism is critical for projection of
changes in C cycling of terrestrial ecosystems.

Methodology/Principal Findings: A 4-year field experiment with day and night warming was conducted to examine the
responses of plant phenology and their influences on plant coverage and ecosystem C cycling in a temperate steppe in
northern China. Greater phenological responses were observed under night than day warming. Both day and night warming
prolonged the growing season by advancing phenology of early-blooming species but without changing that of late-
blooming species. However, no warming response of vegetation coverage was found for any of the eight species. The
variances in species-level coverage and ecosystem C fluxes under different treatments were positively dependent upon the
accumulated precipitation within phenological duration but not the length of phenological duration.

Conclusions/Significance: These plants’ phenology is more sensitive to night than day warming, and the warming effects
on ecosystem C exchange via shifting plant phenology could be mediated by precipitation patterns in semi-arid grasslands.
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Introduction

Climate warming has the potential to influence the structure

and functioning of ecosystems [1,2]. It can affect terrestrial

primary production not only directly by changing plant photo-

synthesis [1] but also indirectly via extending the length of growing

season [3–5], increasing soil nitrogen mineralization and avail-

ability [6], reducing soil water availability [7], and changing

species composition [8,9]. Given that these processes occur in

different times at both seasonal (e.g., flowering in spring and

senescence in autumn) and diurnal (e.g., photosynthesis during

daytime and only plant respiration at night) scales, many

uncertainties still remain unresolved in projection of the terrestrial

carbon (C) feedback to climate warming.

At the seasonal scale, climate warming often leads to earlier

flowering in spring and later senescence in autumn globally [10–

12], indicating an extended period of active plant growth under

warmer conditions. The extension of growing season may serve as

one of the important mechanisms in enhancing ecosystem

production under climate warming [10,13]. For example, a

growing body of results from atmospheric monitoring of carbon

dioxide (CO2) and satellite remote-sensing of ecosystem produc-

tion has revealed a positive dependence of net primary production

(NPP) upon growing season length over the past decades [14–17].

However, the positive impact of prolonged growing season on

NPP has been challenged in recent years because other processes

under climate warming can counteract or reverse the positive

impacts of warming-shifted plant phenology on ecosystem C

uptake. For example, although premature flowering improves

plant fitness, summer drought associated with climate warming

can reduce reproductive success of plant species [18] and cancel

out the C uptake of terrestrial ecosystem [19,20]. In addition, the

enhanced respiration by autumn warming can weaken the CO2

uptake enhancement induced by earlier growing season under

spring warming [21]. Moreover, advanced budbreak under

warming may lead to injury from a late-spring frost and longer

leaf retention and increase the risk of freezing damage in the

autumn [22]. All these studies suggest that the mechanism of

warming effects on plant growth and terrestrial NPP is complex

and the influences of lengthening growing season on ecosystem C

sequestration may be regulated by other biotic and abiotic factors

associated with climate warming.

At the diurnal scale, because plant photosynthesis occurs during

daytime and there is only plant respiration at night, similar

magnitudes of temperature increase during daytime and at night

could bring differential impacts on ecosystem C cycling. Studies
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with numerous techniques, including manipulative experiments

[23,24], long-term observations [25], and model simulations

[26,27], have found differential influences of day vs. night

warming on plant production. However, all the above findings

have been attributed to changes in leaf-level C exchange processes

under climate warming but neglected the influence of warming-

shifted plant phenology on ecosystem C cycling. Only a few studies

up to date have reported the impacts of day vs. night warming on

plant phenology and their potential influences on ecosystem C

exchange [28]. Historical meteorological records and model

projections have revealed that climate warming occurs with

greater magnitudes of temperature increase at night than during

daytime [29]. Because the diurnal pattern of climate warming

varies greatly among regions [30], understanding the possibly

differential effects of day and night warming on plant phenology

and their consequent influences on ecosystem C exchange will

facilitate the projection of climate warming-terrestrial C feedback.

To address the issues raised above, we have conducted a field

experiment to investigate the effects of day and night warming on

phenology and ecosystem C exchange with four treatments,

including control, day (06:00 am–06:00 pm, local time) warming,

night (06:00 pm–06:00 am) warming, and whole-day warming in a

semiarid temperate steppe in northern China since 2006. We

experimentally tested the different effects between day and night

warming on plant phenology, and explored the importance of

plant phenology shifts in influencing ecosystem C exchange.

Materials and Methods

Study site and experimental design
This study was conducted in a semiarid temperate steppe in

Duolun County (42u029N, 116u179E, 1324 m a.s.l.) in Inner

Mongolia, China. Long-term (1953–2007) mean annual precipi-

tation is approximately 383 mm with 90% of which falling from

May to October. Mean annual temperature is 2.1uC with monthly

mean temperature ranging from 217.5uC in January to 18.9uC in

July. The sandy soil of the study site is classified as Haplic Calcisols

according to the FAO classification, with bulk density of

1.31 g cm23 and pH of 7.7.

The experiment has received the permits for the field study from

the land owner, Institution of Botany, the Chinese Academy of

Sciences. We used a complete random block design with 6

treatments, including control, day warming (06:00 a.m.–06:00

p.m., local time), night warming (06:00 p.m.–06:00 a.m.), whole-

day warming (24 h), nitrogen addition, and whole-day warming

plus nitrogen addition. We used control, day warming, night

warming, and whole-day warming (e.g., ref. [24]) to examine the

differential effects of day and night warming, and used control,

nitrogen addition, whole-day warming, and nitrogen addition plus

whole-day warming (e.g., ref. [31]) to test the interactive effects

between nitrogen addition and whole-day warming. The effects of

nitrogen addition and whole-day warming plus nitrogen addition

were not included in the current study. Every treatment was

replicated 6 times. With a 3 m distance between any two adjacent

plots, thirty-six plots (364 m) were arranged in a 666 matrix. The

warmed plots were heated using MSR-2420 infrared radiators

(Kalglo Electronics Inc, Bethlehem, PA, USA) suspended at the

height of 2.25 m above the ground. To simulate the shading

effects of the infrared radiator, one ‘‘dummy’’ heater with the

same shape and size as the infrared heater was suspended 2.25 m

above ground in each unwarmed plot. The experimental plots

were set up in September 2005 and warming treatments began on

23 April 2006. Because there are no living plants during late

November to next early March and the warming effects on soil

temperature during this period is very small (see Fig. 1 of [32]), the

heaters were turn off during this period since the second year.

Air temperature and precipitation used in this study were

monitored hourly by a meteorological station (about 200 m away

from the experimental plots) with an automatic system (Campbell

Science Equipment, Logan, UT) at about 1.5 m above the

ground.

Measurements of soil temperature and moisture
Soil temperatures at the depth of 10 cm were recorded with an

automatically Datalogger (STM-01 Soil Temperature Measure-

ment System, Henan Electronic Institude, Zhengzhou, China).

One temperature sensor was placed at the center in each plot. The

data were stored at a 10-minute interval. Soil moisture at the

depth of 10 cm was measured weekly using Diviner-2000 Portable

Soil Moisture Probe (Sentek Pty Ltd., Balmain, Australia). Two

measurements were taken weekly in each plot.

Phenological observations
There were 50 plant species present in the experimental plot

from 2006 to 2009. We monitored the flowering and fruiting

phenology of 8 species over the entire growing season (from the

earliest species, Potentilla acaulis, in May to the latest species,

Artemisia frigida, in October) from 2006 to 2009. The 8 species

include five forbs (Potentilla acaulis, Potentilla bifurca, Potentilla

tanacetifolia, Allium bidentatum, and Heteropappus altaicus), two C3

grasses (Agropyron cristatum and Stipa krylovii), and one semi-shrub

(Artemisia frigida). More information about the species traits and

plant community structure can be found in a previous report in the

same experimental site [9]. According to their natural phenolog-

ical times, they could be divided into 3 groups including early (P.

acaulis and P. bifurca), middle (A. cristatum, P. tanacetifolia, and A.

bidentatum), and late (S. krylovii, H. altaicus, and A. frigida) species.

The 8 species monitored in this study were dominant in the

community at this site. Over the four growing seasons, the 8 plant

species together accounted for 78% of the total aboveground

biomass. Because these 8 species are the dominant species in the

experimental plots, we only used their responses to represent the

total community dynamics.

As soon as any of the 8 species produced obvious bud, we

tagged five mature individuals for each species in each plot. The

scoring of phenological stages was modified from Price and Waser

[33], Dunne et al. [34], and Sherry et al. [3]. For forbs and semi-

shrub, plant phenology was divided into 7 stages: plant not yet

flowering (stage 0), unopened buds (stage 1), open flowers (stage 2),

old flowers (post-anthesis; stage 3), initiated fruit (stage 4),

expanding fruit (stage 5), and dehisced fruit (stage 6). For grasses,

there were five stages: plant with flower stalks (stage 0), presence of

spikelets (stage 1), exerted anthers and styles from the spikelet

florets (stage 2), dried and broken-off anthers and styles (seed

development; stage 3), and disarticulated seeds (stage 4). For

grasses, we also scored the date when most culms in boot were

visible as stage 1/2. Reproductive duration was calculated as the

time between stage 1 (1/2 for grasses) and 5 (3 for grasses) for forbs

and semi-shrub. Temporal overlap in the duration among

different species was expressed as the time between the stage 1

(1/2 for grasses) of later species and the stage 5 (3 for grasses) of

earlier species for forbs and semi-shrub. Therefore, we first

calculated temporal overlap for each species and then summed

them as the total temporal overlap in reproductive duration for all

the 8 species.

For all species, each flowering stage present on every plant

(whether in ray- or disk-florets) was noted. In each plot, we

averaged all the stages present on the individuals to calculate a
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single weighted phenological score on each observation day. For

forbs and semi-shrubs, the buds that did not open at the end of

growing season were not included in the calculation of

phenological score. For grasses, because some florets never

developed seed, we assigned the stage after the presence of

anthers as stage 3. The monitoring ended when all plants of a

species have reached a phenological stage of 6 for forbs and semi-

shrubs and 4 for grasses. If most of the fruits of a plant had

dehisced and no more seed dehisced in the following 2 weeks, the

data collections were ended.

Coverage estimation
In August 2005, we established two permanent 161 m quadrats

in each plot. Plant species composition was recorded in each

quadrat at the end of August during the peak biomass by visually

estimating percent cover of each plant species from 2006 to 2009.

During the measurement, a 161 m frame with 100 equally

distributed cells (10610 cm) was put above the canopy in each

quadrat. We first recorded the percent cover of each species in

each grid, then summed all grids as total cover in each 161 m

quadrats for each species, and at last used mean value of the two

quadrats as the species percent coverage in each plot.

Ecosystem C fluxes measurements
From May to October, ecosystem C fluxes were measured twice

a month at 3-h intervals (8 times each measuring day; 06:00,

09:00, 12:00, 15:00, 18:00, 21:00, 00:00, and 03:00) with a

transparent chamber (0.560.560.5 m) attached to an infrared gas

analyzer (IRGA; LI-6400, LiCor, Lincoln, NE, USA). Two small

fans ran continuously to mix the air inside the chamber. The

polyethylene sheeting used for the chamber allows .90% of

photosynthetic active radiation to pass into the chamber and the

increases in air temperature during the measuring time period

were less than 0.2uC. Two aluminum frames (0.560.5 m) were

inserted 2–3 cm into the soil at two corners of each plot in 2005.

During the measurement, the chamber was first placed and sealed

on the frames for 20s and then CO2 concentrations were

consecutively recorded during a 90-s period. We first measured

net ecosystem C exchange (NEE), and then vented the chamber

and replaced it on the frame and covered it with an opaque cloth.

Because of elimination of light (and hence photosynthesis), the

values of CO2 exchange represented ecosystem respiration (ER).

Gross ecosystem exchange (GEE) was calculated as the difference

between NEE and ER from 06:00 to 18:00. Seasonal net

ecosystem productivity (NEP), ER, and gross ecosystem produc-

tivity (GEP) were calculated by multiplying daily integrated values

of NEE, ER, and GEE, respectively, by the number of days since

last measurement. Here NEP was defined as -SNEE, with negative

value represents C source and positive value means C sink.

To measure total soil respiration, we inserted two PVC collars

(11 cm in internal diameter and 5 cm in height; 2–3 cm into the

soil) at two opposite corners in each plot. In order to exclude

aboveground plant respiration, we removed all living plants inside

the soil collars by hand at least one day prior to the measurements.

Total soil respiration was measured by a LI-8100 portable soil

CO2 fluxes system (Li-Cor, Inc., Lincon, NE, USA) twice a month

with 3-h intervals (06:00, 09:00, 12:00, 15:00, 18:00, 21:00, 00:00,

and 03:00). The values of total soil respiration used in the multiple

analyses were calculated by multiplying daily integrated values.

Data analysis
Because Richards equation is more flexible than the logistic

equation to describe different shapes of growth data [35], we used

Richard growth equation with the contraction-expansion algo-

Figure 1. Monthly integrated values of (a) day (D), night (N), and whole-day (W) warming effects on soil temperature and (b) soil
temperature in control plots. Soil temperature was measured at the depth of 10 cm.
doi:10.1371/journal.pone.0032088.g001
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rithm [36] to fit phenological data from each species in each plot.

The equation was described as:

Y~K=(1za|e({b|X ))m

Where Y is the scored phenological stages (0–6 for forbs and for

grasses 0–4). K is the maximum growth (here the last phenological

stage, 6 for forbs and 4 for grasses); a is a parameter related to the

first observation date; b is growth rate (phenological stage change

per day) over time X (days since the first observation date); and m is

a parameter related to the curve shape. First we estimate the 4

parameters by the contraction-expansion algorithm [36]. The

method searches for optimal parameters by contracting and

expanding search space alternatively with the objective of minimal

residual sum squares. The parameter estimations were performed

separately for each plot and species.

Times of the flowering (stage 2 for all species) and the fruiting

(stage 3.5 for forbs and semi-shrub and 2.5 for grasses) were

calculated by the calibrated Richards equation (see more details in

supplemental text in ref [3]) for each species in each plot.

We used ANOVAs to test the warming effects on soil

temperature and species coverage, and linear and multiple

stepwise analyses (with P,0.10 as the criterion for selection) to

examine the dependence of changes in species coverage and

ecosystem C fluxes upon reproductive duration, accumulated

precipitation and temperature, and temporal overlap among

growing seasons. In each year, we summed the daily precipitation

and air temperature within reproductive duration as the

accumulated precipitation and temperature for different species.

The total accumulated precipitation (or temperature) in a growing

season was summed from accumulated precipitation (or temper-

ature) of all species in that year. Repeated Measures ANOVA

(RMANOVA) were used to examine the effects of species, day

warming, and night warming on flowering time, fruiting time,

reproductive duration, and coverage. RMANOVAs were also

used to test the effects of day and night warming on species-level

phenological events and ecosystem C fluxes. Between-subject

effects were evaluated as day and night warming and within-

subject effects were year. The species-level coverage from 2006 to

2009 used in the analysis was calibrated as minus the pretreatment

data in 2005. The fitting of calibrated Richards equation was

carried out in Matlab (Mathworks, Natick, MA) and all statistical

analyses were conducted with SAS software (Version 8.01; SAS

Institute Inc., Cary, NC, USA).

Results

Soil temperature
As expected, daily mean soil temperature at 10 cm depth was

0.77, 0.98, and 2.10uC higher in day, night, and whole-day

warming treatment plots, respectively (Fig. 1a). The results of 3-

way ANOVA showed both significant main effects of day and

night warming (both P,0.001) on soil temperature. No interactive

effect between year and day or night warming (both P.0.10) was

detected, and there was no interaction between day and night

warming on soil temperature (P.0.10) over the 4 growing seasons.

Plant phenology
From 2006 to 2009, the results of RMANOVAS showed that

there were significant main effects of night warming, species, and

year on both flowering and fruiting times (all P,0.01), whereas no

effect of day warming on either flowering or fruiting time (both

P.0.05) was detected (Fig. 2). Averaged over the 8 species, night

warming advanced the flowering and fruiting time by 0.8 and 0.7

days, respectively (Fig. 2a, b; Supporting Information S1, S2).

Neither day nor night warming (both P.0.10) affected reproduc-

tive duration over the 4 growing seasons (Fig. 2c; Supporting

Information S3). No interactive effects of day 6night warming or

year6night warming were found on flowering time, fruiting time,

or reproductive duration were observed (all P.0.10), whereas an

interactive effect between year and day warming was detected on

fruiting time (P = 0.010). Species did not interact with day or night

warming to affect any of the phenology events (all P.0.05).

At the species level across the 4 growing seasons, day warming

showed marginally significant effects on flowering times of P.

acaulis (advanced by 1.060.1 days; P = 0.090) and A. bidentatum

(advanced by 1.160.5 days; P = 0.080; Fig. 3A). Night warming

accelerated the onset of flowering of A. cristatum (1.560.2 days;

P = 0.009), A. bidentatum (1.560.7 days; P = 0.024), and S. krylovii

(0.660.2 days; P = 0.083), while delayed the flowering time of H.

altaicus (0.960.4 days; P = 0.042; Fig. 3A). Compared with

flowering time, fruiting time was less responsive to elevated

temperature. Day warming only marginally delayed the fruiting

time of H. altaicus by 0.9 days (60.6; P = 0.062). Night warming

advanced the fruiting times of A. cristatum, P. tanacetifolia, and S.

krylovii by 1.4 (60.6; P = 0.048), 1.8 (60.6; P = 0.033), and 1.0

(60.2; P = 0.038) days, respectively (Fig. 3B), but marginally

delayed the fruiting time of H. altaicus (0.960.2 days; P = 0.077;

Fig. 3B). For reproductive duration, day warming only showed

negative impacts on P. bifurca (21.960.8 days; P = 0.032). Night

warming significantly prolonged the reproductive duration of A.

bidentatum (+2.560.8 days; P = 0.001) whereas shortened those of P.

tanacetifolia (22.561.5 days; P = 0.075) and S. krylovii (21.360.6

days; P = 0.074; Fig. 3C).

When divided the 8 species into different phenological stages

(early, middle, and late), both day (P = 0.097) and night (P = 0.067)

warming showed marginally negative effects (or advancing effects)

on flowering time of early species but neither of them (both

P.0.10) influenced the flowering time of late species (Fig. 3a). The

flowering time of middle species was significantly advanced by

night (P,0.001) but not day (P = 0.683) warming (Fig. 3a). For the

fruiting time, only night warming significantly advanced that of

middle species (P,0.001; Fig. 3b). Neither day nor night warming

impacted the reproductive duration of early, middle, or late

species in this study (all P.0.10; Fig. 3c).

Plant coverage and ecosystem C exchange
No response of species percent coverage to either day or night

warming (both P.0.10) was found over the 8 species across the 4

growing seasons. When divided the data into different species,

neither day nor night warming affected species-level coverage

except for a marginally positive effect of day warming on the

coverage of P. bifurca (P = 0.071; Fig. 4). In addition, the response

directions of species coverage to warming treatments were

opposite to the responses of reproductive duration for most of

the 8 species (Fig. 3c and 4). Across the 4 growing seasons from

2006 to 2009, though RMANOVAs showed that neither GPP nor

ER was significantly affected by day or night warming (all

P.0.10), NEP (net ecosystem productivity) was not affected by day

warming (P.0.10) but was significantly enhanced by night

warming (P = 0.045; Fig. 5).

Biotic and abiotic factors influencing phenology, cover-

age, and ecosystem C exchange. Given the importance of

water availability to plant growth in this ecosystem [9], we

analyzed the relationship between the flowering time and the

accumulated precipitation during the preceding period (from Jan.

1 to the date of flowering time) for each species. Across different

treatments over the 4 years, positive dependence of flowering time
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upon precipitation were found for 3 spring-summer species (P.

acaulis, A. cristatum, and P. tanacetifolia; Fig. 6a, c, d), while negative

relationships were detected on 2 autumn species (A. bidentatum and

H. altaicus; Fig. 6f, g).

When plant phenology was shifted, both biotic and abiotic

factors which are important for plant growth and ecosystem C

exchange would be changed. In this study, temporal overlap of

reproductive duration among species was not affected by day

warming but significantly reduced by night warming (P,0.001)

over the 4 growing seasons, suggesting an increase in phenological

complementarity under night warming. Though shifts in plant

phenology induced changes in accumulated temperature and

Figure 2. Species-level flowering time, fruiting time, and reproductive duration under control (C), day warming (D), night warming
(N), and whole-day warming (W) treatments. Species are listed in the order of the mean time of buds first observed in the control plots over the
four growing seasons, beginning in April with P. acaulis (Pa) and ending in October with A. frigida (Af). Inset panels represent the warming effects on
phenological events of early (E), middle (M), and late (L) species. Data are mean 6 SE for advanced (2) or delayed (+) phenology, respectively. P.
bifurca (Pb), A. cristatum (Ac), P. tanacetifolia (Pt), A. bidentatum (Ab), S. krylovii (Sk), and H. altaicus (Ha).
doi:10.1371/journal.pone.0032088.g002
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precipitation, no effect of either day or night warming on

accumulated temperature within reproductive periods was found

from 2006 to 2009 (P.0.10). Similarly, during the 4 growing

seasons, accumulated precipitation within reproductive periods

was not altered by either day or night warming except for a

negative impact of night warming was detected in 2006

(P = 0.041). Across different treatments over the 4 growing seasons,

stepwise multiple regression analyses showed that changes in

accumulated precipitation within reproductive period explained

54.7% (P = 0.001), 61.4% (P,0.001), and 60.2% (P,0.001) of the

variances in GEP, ER, and soil R, respectively (Table 1).

Reproductive duration negatively affected GEP (partial

r2 = 0.018; P = 0.027), ER (partial r2 = 0.053; P,0.001), and soil

R (partial r2 = 0.372; P,0.001) across the 4 growing seasons

(Table 1). Accumulated temperature (partial r2 = 0.523; P = 0.002)

and species overlap (partial r2 = 0.330; P,0.001) together

explained 85.3% of the variations in NEP under different

treatments across the 4 growing seasons (Table 1).

When the effects of day and night warming were pooled

together, the warming-induced relative changes in the total

coverage of the 8 species showed a positively linear dependence

upon the changes in accumulated precipitation induced by shifts of

Figure 3. Changes in the flowering time (A), fruiting time (B), and reproductive duration (C) (in days) under day (open bars) and
night (filled bars) warming. ‘, P,0.10; *, P,0.05, **, P,0.05. See Fig. 2 for species name abbreviations.
doi:10.1371/journal.pone.0032088.g003

Figure 4. Coverage response of individual species to day (D) and night (N) warming from both pre-treatment (2005) and post-
treatment (2006–2009). Pre-treatment (2005) values of day- and night-warming effects are indicated by horizontal gray solid and dashed lines,
respectively. Means 6 SE are shown. *, P,0.05. The y-axis is in different scales among the 8 species.
doi:10.1371/journal.pone.0032088.g004
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reproductive periods across the 4 growing seasons (r2 = 0.49,

P = 0.076; Fig. 7). The results of stepwise multiple regression

analyses (including the independent factors of reproductive

duration, accumulated precipitation, accumulated temperature,

and phenological overlap) showed that the changes in accumulat-

ed precipitation itself explained 48.3% (P = 0.056) variations of the

changes in species percent coverage.

Discussion

Warming effects on plant phenology
It has widely been reported that earlier spring phenological

events are associated with rising temperature under climate

warming in recent decades [11–12,37–39]. For instance, two

previous meta-analyses [11–12] have summarized the globally

coherent ‘‘fingerprint’’ of climate change and indicated that plant

phenology has been already shifted in the past several decades.

However, our result suggests that the response of plant phenology

to climate warming is greatly dependent upon the diurnal pattern

of increasing temperature. In this study, both flowering and

fruiting times of the plant community were significantly advanced

by night warming whereas neither of them was affected by day

warming. The premature phenological stage under night warming

in this study is consistent with the result from a previous

experimental study across Europe which found night warming

lead to earlier bud break for most species [40]. Given that the

diurnal pattern of climate warming varies greatly among regions

[30], the differential impacts of day and night warming on plant

phenology could contribute to the large spatial variability in

phenology shifts in the past decades [41,42].

At the species level, both day and night warming showed

various, including advancing, neutral, and delaying, effects on

phenological times of the 8 species (Fig. 3). Our results are

consistent with long-term observations of phenology from 385

British plant species, 16% of which flowered earlier whereas 3%

flowered later in the 1990s compared with the previous 45 years

[41]. This highlights diverse sensitivities and patterns of phenology

among plant species in response to climate warming [40,41,43].

Although the responses among plant species differed substantially,

both day and night warming advanced the flowering time of early

blooming species, e.g. P. acaulis, but did not affect that of late-

blooming species, leading to longer growing seasons (Fig. 3A and

a). The extension of growing season under elevated temperature in

this study is in accordance with the observations in many previous

studies which used numerous techniques, including field observa-

tion [3,44,45], remote-sensing of ecosystem production [10,46],

monitoring of atmospheric CO2 concentration [15], and ecolog-

ical modeling [17,47]. Thus, at the community level, elevated

temperature both during daytime and at night will prolong the

growing season of the semi-arid grassland in northern China.

Controlling factors of warming effects on ecosystem C
exchange via shifting plant phenology

Although the length of growing season was extended, neither

day nor night warming showed significant impact on species-level

reproductive duration (Fig. 3C and c) or species percent coverage

(Fig. 4) over the 4 growing seasons in this study. In addition, the

warming effects on reproductive duration and coverage were in

the opposite directions for most species (Fig. 3c and 4). At the

ecosystem level, changes in reproductive duration showed negative

influences on all GEP, ER and SR, which determine the NEP,

under the different treatments across the 4 growing seasons

(Table 1). The negative impacts of reproductive duration on

ecosystem C exchange could be contributed to the greater

temporal species overlap, which reduced phenological comple-

mentaity (thus enhanced the competition for resources) among

species, at longer reproductive duration (Supporting Information

S4). These results were not in agreement with those in previous

studies that ecosystem production strongly depends upon the

active growth length in the past several decades [17,19,48].

However, our results are consistent with a network study from 6

countries across Europe, in 5 of which observed insignificant

response of biomass accumulation in the warmed plots irrespective

of the extended length of growing seasons [40]. Similarly, no

increase in alpine snowbed production in response to experimental

lengthening of the growing season has recently been reported [49].

In addition, a 9-year eddy flux observation in a subalpine forest in

the Colorado Rocky Mountains has found a negative relationship

between net ecosystem production and growing season length

[50]. Thus, although warming would prolong the growing season

of plant community and change growth period of individual

species, other factors may preclude or regulate the changes in

biomass accumulation and ecosystem C exchange [40].

In this study, the accumulated precipitation within reproductive

period was the predominant factor in regulating the variations in

Figure 5. Mean values of net ecosystem productivity (a; NEP),
gross primary productivity (b; GPP), and ecosystem respiration
(c; ER) under control (C), day warming (D), night warming (N),
and whole-day warming (W) from 2006 to 2009. Means 6 SE are
shown. Both the x- and y-axis are in different scales among the 8
species.
doi:10.1371/journal.pone.0032088.g005
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ecosystem C fluxes and vegetation coverage across all the

treatments and growing seasons (Table 1), and the warming-

induced changes in accumulated precipitation within reproductive

periods was the main driver for the warming effects on species

coverage (Fig. 7). These results indicate that water availability

within plant active growth period will regulate the effect of

warming-shifted plant phenology on ecosystem C exchange in this

ecosystem. The results in this experiment are in accordance with

some recent observations from larger scale studies. For example, a

recent study in a subalpine forest found that longer growing season

could reduce winter snow pack and thus soil water availability

during summer, which will negatively affect ecosystem production

[50]. Similarly, a previous study based on multi-year tower eddy

flux measurement of CO2 exchange and phenology found that

positive effects of earlier onset of flowering may be reduced by

summer drought [19]. Up to now, only a few studies have been

performed for the relationship between precipitation and plant

phenology which found various effects of precipitation on times of

phenological events. For example, Piao et al. [51] found that

increased precipitation likely advanced the plant onset dates for

temperate grassland. However, field experiments in northern

Figure 6. Relationships between the flowering time and accumulated precipitation in preceding periods (from Jan. 1) for the 8
species. See Fig. 2 for species name abbreviations.
doi:10.1371/journal.pone.0032088.g006

Table 1. Results of stepwise multiple regression analyses.

Variable
entered

Parameter
estimate Patial r2 Probability

GEP Accumulated P 5.449 0.547 0.001

Accumulated T 1.480 0.062 0.002

RD 236.046 0.018 0.027

ER Accumulated P 5.289 0.614 ,.001

RD 245.534 0.053 0.000

Accumulated T 1.415 0.025 0.063

Soil R Accumulated P 4.815 0.602 ,.001

RD 214.299 0.372 ,.001

NEP Accumulated T 0.953 0.523 0.002

Species overlap 23.060 0.330 0.000

Dependent variables: annual growing-season gross ecosystem productivity
(GEP), ecosystem respiration (ER), total soil respiration (Soil R), and net
ecosystem productivity (NEP); Independent variable: accumulated temperature
(T) and precipitation (P), reproductive duration (RD), and temporal species
overlap. Negative values of parameters estimates imply a negative relationships
between the examined dependent variable and the independent variables.
doi:10.1371/journal.pone.0032088.t001

Figure 7. Dependence of warming-induced relative changes in
the total plant coverage upon the changes in total accumulat-
ed precipitation over the 8 species within reproductive period
from 2006 to 2009. Open circle, day warming; filled circle, night
warming.
doi:10.1371/journal.pone.0032088.g007
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America grasslands have not detected significant response of plant

phenology itself to precipitation [3,5]. The observations of climate

and phenology in Europe have not revealed relationship between

precipitation and phenology either [52]. In this study, we found

different dependences of flowering time upon accumulated

precipitation during the preceding period between spring-summer

and autumn species (Fig. 6). A similar relationship between

autumn phenology and accumulated precipitation during the

preceding period has been reported for two autumn-flowering

shrub species in Mediterranean area [53]. These results suggest

the species-specific dependence of phenology on precipitation in

this ecosystem. It is interesting that the negative effect of warming

on soil moisture were greater in growing seasons with more total

precipitation (Supporting Information S5). That means if plants

move into wetter conditions, there will be a larger negative

warming effect on plant growth via reducing soil moisture. Thus,

precipitation patterns will critically mediate the role of warming-

shifted plant phenology in regulating plant growth and ecosystem

C exchange under the ongoing climate change.

Differential impacts of day and night warming on
ecosystem C exchange

From 2006 to 2009, neither reproductive duration nor

accumulated precipitation within reproductive period was

changed by day warming, which is consistent with the insignificant

response of NEP under day warming with the data from the first 3

seasons (2006–2008) in this study [24]. The re-analysis of the 4-

season data (2006–2009) in this study also found similar effect of

day warming on NEP (Fig. 5a). Under night warming, NEP was

enhanced over the 4 growing seasons though the accumulated

precipitation within reproductive period was not changed. It

suggests that other processes other than changes in water

availability could be also important in mediating the different

responses of ecosystem C exchange to day and night warming. In

this system, two ecological processes may contribute to the positive

response of NEP to night warming (Fig. 5a). One is phenological

complementarity, which is an important mechanism by which

competitive relationship of plant species affects ecosystem

production [54]. In this study, night warming decreased temporal

overlap and thus enhanced phenological complementaity and

reduced the competition for limiting resources among species.

Similarly, in an analysis of a long-term dataset, the reduction in

flowering overlap among the plant species which shares pollinators

also has been found in early-snowmelt years [55]. The increase in

phenological complementarity will positively influence ecosystem

production under night warming in this ecosystem. In fact, the

multiple regression analyses showed that species temporal overlap

was the dominant factor in influencing variations in NEP under

different treatments across the 4 growing seasons (Table 1). The

other reason could be leaf-level photosynthetic overcompensation,

which has been found under night warming in this experiment

[24]. Night warming has increased nighttime respiration and

consumption of carbohydrates in leaves, and consequently

stimulated plant photosynthesis and ecosystem C uptake in the

subsequent days in this ecosystem [24,56]. All the observations

above indicate that both the effects of warming-shifted plant

phenology and other associated ecological processes must be taken

into consideration in predicting ecosystem C cycling under climate

warming.

Conclusions
This study has revealed that plant phenology in the temperate

steppe in northern China was more sensitive to night than day

warming. At the community level, both day and night warming

caused longer growing seasons of plant community by advancing

the onset of early-blooming species but unchanging that of late-

blooming species. However, the impacts of warming-induced

changes in the duration of active plant growth on vegetation

coverage and ecosystem C exchange were mediated by the

accumulated precipitation during phenological period. Although

the accumulated precipitation within reproductive period was not

altered by day or night warming in the experiments from 2006 to

2009, the regulation of precipitation on the warming effects on

ecosystem C exchange can not be neglected as both the amount

and temporal distributions of precipitation have been predicted to

change in the future [28]. Our observations indicate that although

climate warming will extend the length of growing season, its

impact on ecosystem C exchange would not always be positive and

could be mediated by precipitation patterns in semi-arid grassland.

The differential effects of day and night warming on plant

phenology highlight the importance of designing experimental

studies with realistic warming trends in the future.
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